Literature
Proving a Mathematical Induction Statement for the Product of Integers and Their Factorials
Proving a Mathematical Induction Statement for the Product of Integers and Their Factorials
To prove the statement:
1 middot; 1! 2 middot; 2! 3 middot; 3! ... n middot; n! (n 1)! - 1
for all integers n geq 1 using the principle of mathematical induction, we will follow these steps:
Step 1: Base Case
First, let's check the base case when n 1:
1 middot; 1! 1
Now calculate the right-hand side:
(1 1)! - 1 2! - 1 2 - 1 1
Thus, the base case holds true:
1 middot; 1! (1 1)! - 1
Step 2: Inductive Step
Assume the statement is true for some integer k geq 1. That is, we assume:
1 middot; 1! 2 middot; 2! 3 middot; 3! ... k middot; k! (k 1)! - 1
We need to show that the statement is also true for k 1:
1 middot; 1! 2 middot; 2! 3 middot; 3! ... k middot; k! (k 1) middot; (k 1)! (k 2)! - 1
Using the inductive hypothesis, we can rewrite this as:
(k 1)! - 1 (k 1) middot; (k 1)! (k 1)! (1 k 1) - 1 (k 1)! (k 2) - 1
Now simplify (k 1)! (k 2):
(k 1)! (k 2) (k 2)! since (k 2)! (k 2)(k 1)!
Thus we have:
(k 1)! (k 2) - 1 (k 2)! - 1
Conclusion:
We have shown that if the statement holds for n k, it also holds for n k 1. Since the base case holds and the inductive step is verified by the principle of mathematical induction, the statement is true for all integers n geq 1.
Therefore, we conclude that:
1 middot; 1! 2 middot; 2! 3 middot; 3! ... n middot; n! (n 1)! - 1 for all n geq 1.
Example:
For n 1, 1 middot; 1! 1 2! - 1 1! - 1, which is true.
If 1 middot; 1! 2 middot; 2! ... k middot; k! (k 1)! - 1 is true for a certain n geq 1, then:
1 middot; 1! 2 middot; 2! ... k middot; k! (k 1) middot; (k 1)! (k 1)! - 1 (k 1) middot; (k 1)! (k 1)! (1 k 1) - 1 (k 1)! (k 2) - 1
and (k 1)! (k 2) (k 2)! since (k 2)! (k 2)(k 1)!.
Thus, (k 1)! (k 2) - 1 (k 2)! - 1, which proves the statement for n k 1.
Induction Base:
Let n 1. Then, 1 middot; 1! - 1 (1 1)! - 1 - 1 1! - 1.
Inductive Step:
Assume that for a certain n geq 1, it is indeed:
1 middot; 1! 2 middot; 2! 3 middot; 3! ... n middot; n! (n 1)! - 1
Then:
1 middot; 1! 2 middot; 2! ... n middot; n! (n 1) middot; (n 1)! (1 middot; 1! 2 middot; 2! ... n middot; n!) (n 1) middot; (n 1)! (n 1)! - 1 (n 1) middot; (n 1)! (n 1)! (1 (n 1)) - 1 (n 1)! (n 2) - 1 (n 2)! - 1
This completes the inductive step, thereby proving the statement for all n geq 1.
-
Coexistence in Integrated Arab and Jewish Neighborhoods: The Case of Haifa
Introductionr r Haifa, the second-largest city in Israel, is renowned for its vi
-
Why Accusations of Plagiarism Fly Even When There’s No Plagiarism
Introduction to the Conundrum of Accusations When the subject of plagiarism aris